Next-Generation Sequencing of Ancient and Recent Fungarium Specimens

Author:

Miller Andrew N.ORCID,Karakehian Jason,Raudabaugh Daniel B.ORCID

Abstract

Fungaria are an unmatched resource for providing genetic data from authoritative, taxonomically-correct fungal species, especially type specimens. These specimens serve to anchor species hypotheses by enabling the correct taxonomic placement of taxa in systematic studies. The DNA from ancient specimens older than 30 years is commonly fragmented, and sometimes highly contaminated by exogenous, non-target fungal DNA, making conventional PCR amplification and Sanger sequencing difficult or impossible. Here, we present the results of DNA extraction, PCR amplification of the ITS2 region, and Illumina MiSeq Nano sequencing of nine recent and 11 ancient specimens, including seven type specimens. The taxa sampled included a range of large and fleshy, to small and tough, or small, melanized specimens of Discina, Gyromitra, Propolis, Stictis, and Xerotrema, with a culture of Lasiosphaeria serving as a positive control. DNA was highly fragmented and in very low quantity for most samples, resulting in inconclusive or incorrect results for all but five samples. Taxonomically-correct sequences were generated from the holotype specimens of G. arctica, G. korshinskii, and G. leucoxantha, from the neotype of G. ussuriensis, and from the positive control. Taxonomic assignments were confirmed through morphology, top BLASTn hits, and maximum likelihood phylogenetic analyses. Though this study was not cost-effective due to the small number of samples submitted and few generating correct sequences, it did produce short DNA barcode fragments for four type specimens that are essential for their correct taxonomic placement in our ongoing systematic studies.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3