RFCT: Multimodal Sensing Enhances Grasping State Detection for Weak-Stiffness Targets

Author:

Ruan Wenjun1ORCID,Zhu Wenbo1ORCID,Zhao Zhijia2,Wang Kai1,Lu Qinghua1,Luo Lufeng1ORCID,Yeh Wei-Chang3ORCID

Affiliation:

1. School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China

2. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

3. Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan

Abstract

Accurate grasping state detection is critical to the dexterous operation of robots. Robots must use multiple modalities to perceive external information, similar to humans. The direct fusion method of visual and tactile sensing may not provide effective visual–tactile features for the grasping state detection network of the target. To address this issue, we present a novel visual–tactile fusion model (i.e., RFCT) and provide an incremental dimensional tensor product method for detecting grasping states of weak-stiffness targets. We investigate whether convolutional block attention mechanisms (CBAM) can enhance feature representations by selectively attending to salient visual and tactile cues while suppressing less important information and eliminating redundant information for the initial fusion. We conducted 2250 grasping experiments using 15 weak-stiffness targets. We used 12 targets for training and three for testing. When evaluated on untrained targets, our RFCT model achieved a precision of 82.89%, a recall rate of 82.07%, and an F1 score of 81.65%. We compared RFCT model performance with various combinations of Resnet50 + LSTM and C3D models commonly used in grasping state detection. The experimental results show that our RFCT model significantly outperforms these models. Our proposed method provides accurate grasping state detection and has the potential to provide robust support for robot grasping operations in real-world applications.

Funder

Guangdong Key Project

Artificial Intelligence Application Service Platform for Industrial Applications

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3