Detectability in Discrete Event Systems Using Unbounded Petri Nets

Author:

Zhu Haoming1,Liu Gaiyun2ORCID,Yu Zhenhua3ORCID,Li Zhiwu1

Affiliation:

1. Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macao SAR 999078, China

2. School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China

3. School of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

This paper investigated the verification of detectability for discrete event systems based on a class of partially observed unbounded Petri nets. In an unbounded net system, all transitions and partial places are assumed to be unobservable. The system administrator can only observe a few observable places, i.e., the number of tokens at these places can be observed, allowing for the estimation of current and subsequent states. The concepts of quasi-observable transitions, truly unobservable transitions, and partial markings are used to construct a basis coverability graph. According to this graph, four sufficient and necessary conditions of detectability are proposed. Correspondingly, a specific example is proposed to prove that the detectability can be verified in the unbounded net system. Furthermore, based on the conclusion of detectability, the system’s ability to detect critical states was explored by using the basis coverability graph, called C-detectability. Two real-world examples are proposed to show that the detectability of discrete event systems has not only pioneered new research methods, but also demonstrated that the real conditions faced by this method are more general, and it has overcome the limitations of relying only on the ideal conditions of bounded systems for verification.

Funder

National R& D Program of China

Science Technology Development Fund

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province

Natural Science Foundation of Shaanxi Province

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3