Multi-Focus Image Fusion via PAPCNN and Fractal Dimension in NSST Domain

Author:

Lv Ming12,Jia Zhenhong12,Li Liangliang3ORCID,Ma Hongbing4ORCID

Affiliation:

1. College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

2. Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China

3. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

4. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Abstract

Multi-focus image fusion is a popular technique for generating a full-focus image, where all objects in the scene are clear. In order to achieve a clearer and fully focused fusion effect, in this paper, the multi-focus image fusion method based on the parameter-adaptive pulse-coupled neural network and fractal dimension in the nonsubsampled shearlet transform domain was developed. The parameter-adaptive pulse coupled neural network-based fusion rule was used to merge the low-frequency sub-bands, and the fractal dimension-based fusion rule via the multi-scale morphological gradient was used to merge the high-frequency sub-bands. The inverse nonsubsampled shearlet transform was used to reconstruct the fused coefficients, and the final fused multi-focus image was generated. We conducted comprehensive evaluations of our algorithm using the public Lytro dataset. The proposed method was compared with state-of-the-art fusion algorithms, including traditional and deep-learning-based approaches. The quantitative and qualitative evaluations demonstrated that our method outperformed other fusion algorithms, as evidenced by the metrics data such as QAB/F, QE, QFMI, QG, QNCIE, QP, QMI, QNMI, QY, QAG, QPSNR, and QMSE. These results highlight the clear advantages of our proposed technique in multi-focus image fusion, providing a significant contribution to the field.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3