Affiliation:
1. Center of Excellence Forest 4.0, Faculty of Informatics, Kaunas University of Technology, 44249 Kaunas, Lithuania
Abstract
Alzheimer’s disease (AD) has become a serious hazard to human health in recent years, and proper screening and diagnosis of AD remain a challenge. Multimodal neuroimaging input can help identify AD in the early mild cognitive impairment (EMCI) and late mild cognitive impairment (LMCI) stages from normal cognitive development using magnetic resonance imaging (MRI) and positron emission tomography (PET). MRI provides useful information on brain structural abnormalities, while PET data provide the difference between physiological and pathological changes in brain anatomy. The precision of diagnosing AD can increase when these data are combined. However, they are heterogeneous and appropriate, and an adequate number of features are required for AD classification. This paper proposed a multimodal fusion-based approach that uses a mathematical technique called discrete wavelet transform (DWT) to analyse the data, and the optimisation of this technique is achieved through transfer learning using a pre-trained neural network called VGG16. The final fused image is reconstructed using inverse discrete wavelet transform (IDWT). The fused images are classified using a pre-trained vision transformer. The evaluation of the benchmark Alzheimer’s disease neuroimaging initiative (ADNI) dataset shows an accuracy of 81.25% for AD/EMCI and AD/LMCI in MRI test data, as well as 93.75% for AD/EMCI and AD/LMCI in PET test data. The proposed model performed better than existing studies when tested on PET data with an accuracy of 93.75%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献