Agent Based Model of Anti-Vaccination Movements: Simulations and Comparison with Empirical Data

Author:

Sobkowicz PawelORCID,Sobkowicz AntoniORCID

Abstract

Background: A realistic description of the social processes leading to the increasing reluctance to various forms of vaccination is a very challenging task. This is due to the complexity of the psychological and social mechanisms determining the positioning of individuals and groups against vaccination and associated activities. Understanding the role played by social media and the Internet in the current spread of the anti-vaccination (AV) movement is of crucial importance. Methods: We present novel, long-term Big Data analyses of Internet activity connected with the AV movement for such different societies as the US and Poland. The datasets we analyzed cover multiyear periods preceding the COVID-19 pandemic, documenting the behavior of vaccine related Internet activity with high temporal resolution. To understand the empirical observations, in particular the mechanism driving the peaks of AV activity, we propose an Agent Based Model (ABM) of the AV movement. The model includes the interplay between multiple driving factors: contacts with medical practitioners and public vaccination campaigns, interpersonal communication, and the influence of the infosphere (social networks, WEB pages, user comments, etc.). The model takes into account the difference between the rational approach of the pro-vaccination information providers and the largely emotional appeal of anti-vaccination propaganda. Results: The datasets studied show the presence of short-lived, high intensity activity peaks, much higher than the low activity background. The peaks are seemingly random in size and time separation. Such behavior strongly suggests a nonlinear nature for the social interactions driving the AV movement instead of the slow, gradual growth typical of linear processes. The ABM simulations reproduce the observed temporal behavior of the AV interest very closely. For a range of parameters, the simulations result in a relatively small fraction of people refusing vaccination, but a slight change in critical parameters (such as willingness to post anti-vaccination information) may lead to a catastrophic breakdown of vaccination support in the model society, due to nonlinear feedback effects. The model allows the effectiveness of strategies combating the anti-vaccination movement to be studied. An increase in intensity of standard pro-vaccination communications by government agencies and medical personnel is found to have little effect. On the other hand, focused campaigns using the Internet and social media and copying the highly emotional and narrative-focused format used by the anti-vaccination activists can diminish the AV influence. Similar effects result from censoring and taking down anti-vaccination communications by social media platforms. The benefit of such tactics might, however, be offset by their social cost, for example, the increased polarization and potential to exploit it for political goals, or increased ‘persecution’ and ‘martyrdom’ tropes.

Funder

Fundacja na rzecz Nauki Polskiej

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3