Innate and Adaptive Immune Parameters following mRNA Vaccination in Mice

Author:

Bonam Srinivasa Reddy1ORCID,Hazell Nicholas C.12,Mathew Mano Joseph34ORCID,Liang Yuejin1ORCID,Zhang Xuxiang5,Wei Zhi5ORCID,Alameh Mohamad-Gabriel6ORCID,Weissman Drew6,Hu Haitao178

Affiliation:

1. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA

2. Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA

3. EFREI Research Lab, Panthéon Assas University, 30-32 Avenue de la République, 94800 Villejuif, France

4. Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France

5. Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

6. Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA

7. Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA

8. Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA

Abstract

The COVID-19 pandemic has raised the standard regarding the current vaccine development pace, as several messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines have proved their ability to induce strong immunogenicity and protective efficacy. We developed 1-methylpseudouridine-containing mRNA-LNP vaccines, expressing either the more conserved SARS-CoV-2 nucleoprotein (mRNA-N) or spike protein (mRNA-S), both based on the prototypic viral sequences. When combining both mRNA-S and mRNA-N together (mRNA-S+N), the vaccine showed high immunogenicity and broad protection against different SARS-CoV-2 variants, including wildtype, Delta, BA.1, BA.5, and BQ.1. To better understand the mechanisms behind this broad protection obtained by mRNA-S+N, we analyzed innate and adaptive immune parameters following vaccination in mice. Compared to either mRNA-S or mRNA-N alone, mice vaccinated with mRNA-S+N exhibited an increase in the innate immune response, as depicted by the higher cytokine (IL-6 and chemokine (MCP-1) levels. In addition, lymph node immunophenotyping showed the maturation and activation of dendritic cells and natural killer cells, respectively. To understand the adaptive immune response, RNA-Seq analyses of the lung and spleen samples of the vaccinated mice were performed in parallel and revealed a stronger immune gene-expression profile in the lung than that in the spleen. Compared to mRNA-S alone, mRNA-S+N vaccination elicited higher levels of expression for genes involved in multiple immune pathways, including T cells, cytokine signaling, antigen presentation, B cells, and innate immunity. Together, our studies provide immunological insights into the mechanisms of broad protection conferred by dual mRNA vaccination against SARS-CoV-2 variants.

Funder

UTMB COVID-19

NIH

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3