A Single-Dose Intramuscular Immunization of Pigs with Lipid Nanoparticle DNA Vaccines Based on the Hemagglutinin Antigen Confers Complete Protection against Challenge Infection with the Homologous Influenza Virus Strain

Author:

Nguyen The N.12,Kumari Sushmita12,Sillman Sarah13,Chaudhari Jayeshbhai14ORCID,Lai Danh C.12ORCID,Vu Hiep L. X.14ORCID

Affiliation:

1. Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

2. School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

3. Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

4. Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

Abstract

The Influenza A virus of swine (IAV-S) is highly prevalent and causes significant economic losses to swine producers. Due to the highly variable and rapidly evolving nature of the virus, it is critical to develop a safe and versatile vaccine platform that allows for frequent updates of the vaccine immunogens to cope with the emergence of new viral strains. The main objective of this study was to assess the feasibility of using lipid nanoparticles (LNPs) as nanocarriers for delivering DNA plasmid encoding the viral hemagglutinin (HA) gene in pigs. The intramuscular administration of a single dose of the LNP-DNA vaccines resulted in robust systemic and mucosal responses in pigs. Importantly, the vaccinated pigs were fully protected against challenge infection with the homologous IAV-S strain, with only 1 out of 12 vaccinated pigs shedding a low amount of viral genomic RNA in its nasal cavity. No gross or microscopic lesions were observed in the lungs of the vaccinated pigs at necropsy. Thus, the LNP-DNA vaccines are highly effective in protecting pigs against the homologous IAV-S strain and can serve as a promising platform for the rapid development of IAV-S vaccines.

Funder

Agriculture and Food Research Initiative competitive

USDA National Institute for Food and Agriculture

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3