The Dynamic Linkage between Provirus Integration Sites and the Host Functional Genome Property Alongside HIV-1 Infections Associated with Antiretroviral Therapy

Author:

Chen Heng-Chang1ORCID

Affiliation:

1. Center for Population Diagnostics, Lukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland

Abstract

(1) Background: The HIV-1 latent reservoir harboring replication-competent proviruses is the major barrier in the quest for an HIV-1 infection cure. HIV-1 infection at all stages of disease progression is associated with immune activation and dysfunctional production of proinflammatory soluble factors (cytokines and chemokines), and it is expected that during HIV-1 infection, different immune components and immune cells, in turn, participate in immune responses, subsequently activating downstream biological pathways. However, the functional interaction between HIV-1 integration and the activation of host biological pathways is presently not fully understood. (2) Methods: In this work, I used genes targeted by proviruses from published datasets to seek enriched immunologic signatures and host biological pathways alongside HIV-1 infections based on MSigDb and KEGG over-representation analysis. (3) Results: I observed that different combinations of immunologic signatures of immune cell types and proinflammatory soluble factors appeared alongside HIV-1 infections associated with antiretroviral therapy. Moreover, enriched KEGG pathways were often related to “cancer specific types”, “immune system”, “infectious disease viral”, and “signal transduction”. (4) Conclusions: The observations in this work suggest that the gene sets harboring provirus integration sites may define specific immune cells and proinflammatory soluble factors during HIV-1 infections associated with antiretroviral therapy.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3