Entry and Disposition of Zika Virus Immune Complexes in a Tissue Culture Model of the Maternal-Fetal Interface

Author:

Xu Yanqun,He Yong,Momben-Abolfath Sanaz,Eller Nancy,Norton Malgorzata,Zhang Pei,Scott Dorothy,Struble Evi Budo

Abstract

Zika virus (ZIKV) infections have been associated with an increased incidence of severe microcephaly and other neurodevelopmental disorders in newborn babies. Passive immunization with anti-ZIKV neutralizing antibodies has the potential to become a feasible treatment or prophylaxis option during pregnancy. Prior to clinical use, such antibodies should be assessed for their ability to block ZIKV passage to the fetus. We used human placental and mammalian cell monolayers that express FcRn and laboratory preparations of anti-ZIKV antibodies as a model system to investigate the disposition of ZIKV/antibody immune complexes (ICs) at the maternal-fetal interface. We further characterized solution properties of the ICs to evaluate whether these are related to in vitro effects. We found that both ZIKV and ZIKV envelope glycoprotein can enter and passage through epithelial cells, especially those that overexpress FcRn. In the presence of ZIKV antibodies, Zika virus entry was bimodal, with reduced entry at the lowest (0.3–3 ng/mL) and highest (µg/mL) antibody concentrations. Intermediate concentrations attenuated inhibition or enhanced viral entry. With respect to anti-ZIKV antibodies, we found that their degradation was accelerated when presented as ICs containing increased amounts of ZIKV immunogen. Of the two monoclonal antibodies tested, the preparation with higher aggregation also exhibited higher degradation. Our studies confirm that intact Zika virus and its envelope immunogen have the potential to enter and be transferred across placental and other epithelial cells that express FcRn. Presence of anti-ZIKV IgG antibodies can either block or enhance cellular entry, with the antibody concentration playing a complex role in this process. Physicochemical properties of IgG antibodies can influence their degradation in vitro.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3