Vaccination with Alpha-Gal Protects Against Mycobacterial Infection in the Zebrafish Model of Tuberculosis

Author:

Pacheco Iván,Contreras Marinela,Villar MargaritaORCID,Risalde María AngelesORCID,Alberdi PilarORCID,Cabezas-Cruz AlejandroORCID,Gortázar Christian,de la Fuente José

Abstract

The alpha-Gal syndrome (AGS) is associated with tick bites that can induce in humans high levels of IgE antibodies against the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate primarily delayed anaphylaxis to mammalian meat consumption. It has been proposed that humans evolved by losing the capacity to synthesize α-Gal to increase the protective immune response against pathogens with this modification on their surface. This evolutionary adaptation suggested the possibility of developing vaccines and other interventions to induce the anti-α-Gal IgM/IgG protective response against pathogen infection and multiplication. However, the protective effect of the anti-α-Gal immune response for the control of tuberculosis caused by Mycobacterium spp. has not been explored. To address the possibility of using vaccination with α-Gal for the control of tuberculosis, in this study, we used the zebrafish-Mycobacterium marinum model. The results showed that vaccination with α-Gal protected against mycobacteriosis in the zebrafish model of tuberculosis and provided evidence on the protective mechanisms in response to vaccination with α-Gal. These mechanisms included B-cell maturation, antibody-mediated opsonization of mycobacteria, Fc-receptor (FcR)-mediated phagocytosis, macrophage response, interference with the α-Gal antagonistic effect of the toll-like receptor 2 (TLR2)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)-mediated immune response, and upregulation of pro-inflammatory cytokines. These results provided additional evidence supporting the role of the α-Gal-induced immune response in the control of infections caused by pathogens with this modification on their surface and the possibility of using this approach for the control of multiple infectious diseases.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3