Effectiveness of COVID-19 Vaccines against Delta (B.1.617.2) Variant: A Systematic Review and Meta-Analysis of Clinical Studies

Author:

Pormohammad AliORCID,Zarei Mohammad,Ghorbani SaiedORCID,Mohammadi MehdiORCID,Aghayari Sheikh Neshin Saeideh,Khatami Alireza,Turner Diana L.,Djalalinia Shirin,Mousavi Seied Asadollah,Mardani-Fard Heydar AliORCID,Kasaeian AmirORCID,Turner Raymond J.ORCID

Abstract

The high transmissibility, mortality, and morbidity rate of the SARS-CoV-2 Delta (B.1.617.2) variant have raised concerns regarding vaccine effectiveness (VE). To address this issue, all publications relevant to the effectiveness of vaccines against the Delta variant were searched in the Web of Science, Scopus, EMBASE, and Medline (via PubMed) databases up to 15 October 2021. A total of 15 studies (36 datasets) were included in the meta-analysis. After the first dose, the VE against the Delta variant for each vaccine was 0.567 (95% CI 0.520–0.613) for Pfizer-BioNTech, 0.72 (95% CI 0.589–0.822) for Moderna, 0.44 (95% CI 0.301–0.588) for AstraZeneca, and 0.138 (95% CI 0.076–0.237) for CoronaVac. Meta-analysis of 2,375,957 vaccinated cases showed that the Pfizer-BioNTech vaccine had the highest VE against the infection after the second dose, at 0.837 (95% CI 0.672–0.928), and third dose, at 0.972 (95% CI 0.96–0.978), as well as the highest VE for the prevention of severe infection or death, at 0.985 (95% CI 0.95–0.99), amongst all COVID-19 vaccines. The short-term effectiveness of vaccines, especially mRNA-based vaccines, for the prevention of the Delta variant infection, hospitalization, severe infection, and death is supported by this study. Limitations include a lack of long-term efficacy data, and under-reporting of COVID-19 infection cases in observational studies, which has the potential to falsely skew VE rates. Overall, this study supports the decisions by public health decision makers to promote the population vaccination rate to control the Delta variant infection and the emergence of further variants.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3