MoS2-Nanoflower and Nanodiamond Co-Engineered Surface Plasmon Resonance for Biosensing

Author:

Chen Yaofei12,Xiong Xin12,Chen Yu12,Chen Lei12,Liu Guishi12,Xiao Wei3,Shi Jifu4,Chen Zhe12,Luo Yunhan12

Affiliation:

1. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China

2. Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China

3. Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China

4. Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China

Abstract

Surface plasmon resonance (SPR) based sensors play an important role in the biological and medical fields, and improving the sensitivity is a goal that has always been pursued. In this paper, a sensitivity enhancement scheme jointly employing MoS2 nanoflower (MNF) and nanodiamond (ND) to co-engineer the plasmonic surface was proposed and demonstrated. The scheme could be easily implemented via physically depositing MNF and ND overlayers on the gold surface of an SPR chip, and the overlayer could be flexibly adjusted by controlling the deposition times, thus approaching the optimal performance. The bulk RI sensitivity was enhanced from 9682 to 12,219 nm/RIU under the optimal condition that successively deposited MNF and ND 1 and 2 times. The proposed scheme was proved in an IgG immunoassay, where the sensitivity was twice enhanced compared to the traditional bare gold surface. Characterization and simulation results revealed that the improvement arose from the enhanced sensing field and increased antibody loading via the deposited MNF and ND overlayer. At the same time, the versatile surface property of NDs allowed a specifically-functionalized sensor using the standard method compatible with a gold surface. Besides, the application for pseudorabies virus detection in serum solution was also demonstrated.

Funder

the National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong province

Basic and Applied Basic Research Foundation of Guangzhou

Science and Technology R&D Project of Shenzhen

The science foundation of Guangdong Second Provincial General hospital

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3