PtNPs/PEDOT:PSS-Modified Microelectrode Arrays for Detection of the Discharge of Head Direction Cells in the Retrosplenial Cortex of Rats under Dissociation between Visual and Vestibular Inputs

Author:

Yang Gucheng12,Wang Yiding12,Xu Zhaojie12,Zhang Xue1,Ruan Wang1,Mo Fan12,Lu Botao12,Fan Penghui12,Dai Yuchuan12,He Enhui12,Song Yilin12,Wang Changyong3,Liu Juntao12,Cai Xinxia12ORCID

Affiliation:

1. State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. Academy of Military Sciences, Beijing 100850, China

Abstract

The electrophysiological activities of head direction (HD) cells under visual and vestibular input dissociation are important to understanding the formation of the sense of direction in animals. In this paper, we fabricated a PtNPs/PEDOT:PSS-modified MEA to detect changes in the discharge of HD cells under dissociated sensory conditions. The electrode shape was customized for the retrosplenial cortex (RSC) and was conducive to the sequential detection of neurons at different depths in vivo when combined with a microdriver. The recording sites of the electrode were modified with PtNPs/PEDOT:PSS to form a three-dimensional convex structure, leading to closer contact with neurons and improving the detection performance and signal-to-noise ratio of the MEA. We designed a rotating cylindrical arena to separate the visual and vestibular information of the rats and detected the changes in the directional tuning of the HD cells in the RSC. The results showed that after visual and vestibular sensory dissociation, HD cells used visual information to establish newly discharged directions which differed from the original direction. However, with the longer time required to process inconsistent sensory information, the function of the HD system gradually degraded. After recovery, the HD cells reverted to their newly established direction rather than the original direction. The research based on our MEAs revealed how HD cells process dissociated sensory information and contributes to the study of the spatial cognitive navigation mechanism.

Funder

National Natural Science Foundation of China

STI 2030—Major Projects

National Key R&D Program of China

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Frontier Interdisciplinary Project of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3