Using Human‐Induced Pluripotent Stem Cell Derived Neurons on Microelectrode Arrays to Model Neurological Disease: A Review

Author:

Lv Shiya12,He Enhui123,Luo Jinping12,Liu Yaoyao12,Liang Wei12,Xu Shihong12,Zhang Kui12,Yang Yan12,Wang Mixia12,Song Yilin12ORCID,Wu Yirong12,Cai Xinxia12ORCID

Affiliation:

1. State Key Laboratory of Transducer Technology Aerospace Information Research Institute Chinese Academy of Sciences Beijing 100190 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. The State Key Lab of Brain‐Machine Intelligence Zhejiang University Hangzhou 321100 China

Abstract

AbstractIn situ physiological signals of in vitro neural disease models are essential for studying pathogenesis and drug screening. Currently, an increasing number of in vitro neural disease models are established using human‐induced pluripotent stem cell (hiPSC) derived neurons (hiPSC‐DNs) to overcome interspecific gene expression differences. Microelectrode arrays (MEAs) can be readily interfaced with two‐dimensional (2D), and more recently, three‐dimensional (3D) neural stem cell‐derived in vitro models of the human brain to monitor their physiological activity in real time. Therefore, MEAs are emerging and useful tools to model neurological disorders and disease in vitro using human iPSCs. This is enabling a real‐time window into neuronal signaling at the network scale from patient derived. This paper provides a comprehensive review of MEA's role in analyzing neural disease models established by hiPSC‐DNs. It covers the significance of MEA fabrication, surface structure and modification schemes for hiPSC‐DNs culturing and signal detection. Additionally, this review discusses advances in the development and use of MEA technology to study in vitro neural disease models, including epilepsy, autism spectrum developmental disorder (ASD), and others established using hiPSC‐DNs. The paper also highlights the application of MEAs combined with hiPSC‐DNs in detecting in vitro neurotoxic substances. Finally, the future development and outlook of multifunctional and integrated devices for in vitro medical diagnostics and treatment are discussed.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3