Tunable Optical Diffusers Based on the UV/Ozone-Assisted Self-Wrinkling of Thermal-Cured Polymer Films

Author:

Jiang Shulan,Tan Yong,Peng Yong,Zhao Jiang

Abstract

Tunable optical diffusers have attracted attention because of the rapid development of next generation stretchable optoelectronics and optomechanics applications. Flexible wrinkle structures have the potential to change the light path and tune the diffusion capability, which is beneficial to fabricate optical diffusers. The generation of wrinkles usually depends on an external stimulus, thus resulting in complicated fabricating equipment and processes. In this study, a facile and low-cost method is proposed to fabricate wrinkle structures by the self-wrinkling of thermal-cured polymer for tunable optical diffusers. The uncured polydimethylsiloxane (PDMS) precursors were exposed to UV/ozone to obtain hard silica layers and then crosslinked via heating to induce the wrinkle patterns. The wrinkle structures were demonstrated as strain-dependent tunable optical diffusers and the optical diffusion of transmitted light via the deformable wrinkle structures was studied and adjusted. The incident light isotropically diffused through the sample at the initial state. When the wrinkle structures deformed, it showed a more pronounced isotropic optical diffusion with uniaxial tensile strain. The optical diffusion is anisotropical with a further increase in uniaxial tensile strain. The proposed method of fabricating wrinkles by UV/ozone-assisted self-wrinkling of thermal-cured polymer films is simple and cost-effective, and the obtained structures have potential applications in tunable optical diffusers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3