Abstract
AbstractOver the past decade, topology has emerged as a major branch in broad areas of physics, from atomic lattices to condensed matter. In particular, topology has received significant attention in photonics because light waves can serve as a platform to investigate nontrivial bulk and edge physics with the aid of carefully engineered photonic crystals and metamaterials. Simultaneously, photonics provides enriched physics that arises from spin-1 vectorial electromagnetic fields. Here, we review recent progress in the growing field of topological photonics in three parts. The first part is dedicated to the basics of topological band theory and introduces various two-dimensional topological phases. The second part reviews three-dimensional topological phases and numerous approaches to achieve them in photonics. Last, we present recently emerging fields in topological photonics that have not yet been reviewed. This part includes topological degeneracies in nonzero dimensions, unidirectional Maxwellian spin waves, higher-order photonic topological phases, and stacking of photonic crystals to attain layer pseudospin. In addition to the various approaches for realizing photonic topological phases, we also discuss the interaction between light and topological matter and the efforts towards practical applications of topological photonics.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Reference256 articles.
1. Thouless, D. J. et al. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).
2. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
3. Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics Vol 5. (USSR Academy of Sciences, Moscow, 1980).
4. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
5. Liu, Y. Z., Chen, X. B. & Xu, Y. Topological phononics: from fundamental models to real materials. Adv. Funct. Mater. 30, 1904784 (2020).
Cited by
315 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献