Frequency Analysis of Acoustic Data Using Multiple-Measurement Sparse Bayesian Learning

Author:

Shin MyounginORCID,Hong WooyoungORCID,Lee Keunhwa,Choo YoungminORCID

Abstract

Passive sonar systems are used to detect the acoustic signals that are radiated from marine objects (e.g., surface ships, submarines, etc.), and an accurate estimation of the frequency components is crucial to the target detection. In this paper, we introduce sparse Bayesian learning (SBL) for the frequency analysis after the corresponding linear system is established. Many algorithms, such as fast Fourier transform (FFT), estimate signal parameters via rotational invariance techniques (ESPRIT), and multiple signal classification (RMUSIC) has been proposed for frequency detection. However, these algorithms have limitations of low estimation resolution by insufficient signal length (FFT), required knowledge of the signal frequency component number, and performance degradation at low signal to noise ratio (ESPRIT and RMUSIC). The SBL, which reconstructs a sparse solution from the linear system using the Bayesian framework, has an advantage in frequency detection owing to high resolution from the solution sparsity. Furthermore, in order to improve the robustness of the SBL-based frequency analysis, we exploit multiple measurements over time and space domains that share common frequency components. We compare the estimation results from FFT, ESPRIT, RMUSIC, and SBL using synthetic data, which displays the superior performance of the SBL that has lower estimation errors with a higher recovery ratio. We also apply the SBL to the in-situ data with other schemes and the frequency components from the SBL are revealed as the most effective. In particular, the SBL estimation is remarkably enhanced by the multiple measurements from both space and time domains owing to remaining consistent signal frequency components while diminishing random noise frequency components.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3