The Role of Coupling Agents in the Mechanical and Thermal Properties of Polypropylene/Wood Flour Composites

Author:

Zárate-Pérez Cecilia1ORCID,Ramírez-Aguilar Rodrigo1ORCID,Franco-Urquiza Edgar A.1ORCID,Sánchez-Alvarado Carlos2

Affiliation:

1. Advanced Manufacturing Department, Center for Engineering and Industrial Development (CIDESI), Carretera Estatal 200, km 23, Querétaro 76270, Mexico

2. Advanced Plastics Technologies (ADAPT), Avda, Industria Petroquímica #402 Lote 1, Manzana 12 Col. Parque Industrial, Querétaro 76220, Mexico

Abstract

This work is a collaborative effort between academia and industry to promote the development of new sustainable and profitable materials for manufacturing products. Incorporating wood flour particles (WF) in polypropylene (PP) grants environmental advantages in developing products that use renewable resources to manufacture PP/WF composites using the melt intercalation process. However, the interaction between a hydrophilic strengthening phase (wood flour) with a nonpolar polymer matrix (PP) is poor, resulting in deficient mechanical performance. This investigation details the use of graft and masterbatch coupling agents to evaluate their effects on mechanical parameters. The low compatibility between the constituents favors increasing the composites’ thermal properties because the reinforcing phase acts as a nucleating agent. PP showed typical mechanical behavior, with a marked necking and a wide deformation capacity of approximately 180%. The mechanical behavior of the PP/WF composites revealed an elastic region followed by a termination after their yield point, shortening the stress–strain curves and reducing their ductility at strain values of approximately 2–4%. Graft coupling agents have better intermolecular performance with PP than masterbatch coupling agents. The modulus of elasticity of the composites increased to around 82% relative to PP. Processing methods influenced the thermal properties of the composites. The melt-blending process promoted molecular orientation, while injection molding erased the thermomechanical history of the extruded pellets. The melting temperature was similar in the composites, so there was no evidence of thermal degradation. The results showed that the coupling agents favor the crystallinity of the PP over tensile strength. SEM observations showed insufficient adhesion between the WF and PP, which promotes a reduction in stress transfer during tensile testing. The WF particles act as fillers that increase the stiffness and reduce the ductility of composites.

Funder

Secretary of Public Education

Publisher

MDPI AG

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3