Effect of Moisture on the Mechanical Properties of Wood–Plastic Composites Hybridized with Metal Grid Layers

Author:

Perišić Srdjan1ORCID,Kalevski Katarina2ORCID,Grujić Aleksandar3,Nedeljković Dragutin3,Stajić-Trošić Jasna3,Radojević Vesna4ORCID

Affiliation:

1. Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

2. Faculty of Stomatology Pancevo, University Business Academy, 21000 Novi Sad, Serbia

3. Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia

4. Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

Abstract

Wood–plastic composites (WPCs) are some of the most common modern composite materials for interior and exterior design that combine natural waste wood properties and the molding possibility of a thermoplastic polymer binder. The addition of reinforcing elements, binding agents, pigments, and coatings, as well as changes to the microstructure and composition, can all affect the quality of WPCs for particular purposes. To improve the properties, hybrid composite panels of WPCs with 30 wt. % and 40 wt. % of wood content and reinforced with one or three metal grid layers were prepared sequentially by extrusion and hot pressure molding. The results show an average 20% higher moisture absorption for composites with higher wood content. A high impact test (HIT) revealed that the absorbed energy of deformation increased with the number of metal grid layers, regardless of the wood content, around two times for all samples before water immersion and around ten times after water absorption. Also, absorbed energy increases with raised wood content, which is most pronounced in three-metal-grid samples, from 21 J to 26 J (before swelling) and from 15 J to 24 J (after swelling). Flexural tests follow the trends observed by HIT, indicating around 65% higher strength for samples with three metal grid layers vs. samples without a metal grid before water immersion and around 80% higher strength for samples with three metal grid layers vs. samples without a grid after water absorption. The synthesis route, double reinforcing (wood and metal), applied methods of characterization, and optimization according to the obtained results provide a WPC with improved mechanical properties ready for an outdoor purpose.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3