Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications

Author:

Psochia EleniORCID,Papadopoulos LazarosORCID,Gkiliopoulos Dimitrios J.ORCID,Francone AchilleORCID,Grigora Maria-EiriniORCID,Tzetzis DimitriosORCID,de Castro Joana Vieira,Neves Nuno M.ORCID,Triantafyllidis Konstantinos S.ORCID,Torres Clivia M. SotomayorORCID,Kehagias NikolaosORCID,Bikiaris Dimitrios N.ORCID

Abstract

In this work, polymer nanocomposite films based on poly(L-lactic acid) (PLLA) were reinforced with mesoporous silica nanoparticles, mesoporous cellular foam (MCF) and Santa Barbara amorphous-15 (SBA). PLLA is a biobased aliphatic polyester, that possesses excellent thermomechanical properties, and has already been commercialized for packaging applications. The aim was to utilize nanoparticles that have already been established as nanocarriers to enhance the mechanical and thermal properties of PLLA. Since the introduction of antibacterial properties has become an emerging trend in packaging applications, to achieve an effective antimicrobial activity, micro/nano 3D micropillars decorated with cone- and needle-shaped nanostructures were implemented on the surface of the films by means of thermal nanoimprint lithography (t-NIL), a novel and feasible fabrication technique with multiple industrial applications. The materials were characterized regarding their composition and crystallinity using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), respectively, and their thermal properties using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Their mechanical properties were examined by the nanoindentation technique, while the films’ antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus strains was tested in vitro. The results demonstrated the successful production of nanocomposite PLLA films, which exhibited improved mechanical and thermal properties compared to the pristine material, as well as notable antibacterial activity, setting new groundwork for the potential development of biobased smart packaging materials.

Funder

European Commission

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3