Prediction and Knowledge Mining of Outdoor Atmospheric Corrosion Rates of Low Alloy Steels Based on the Random Forests Approach

Author:

Zhi YuanjieORCID,Fu Dongmei,Zhang Dawei,Yang Tao,Li Xiaogang

Abstract

The objective of this paper is to develop an approach to forecast the outdoor atmospheric corrosion rate of low alloy steels and do corrosion-knowledge mining by using a Random Forests algorithm as a mining tool. We collected the corrosion data of 17 low alloy steels under 6 atmospheric corrosion test stations in China over 16 years as the experimental datasets. Based on the datasets, a Random Forests model is established to implement the purpose of the corrosion rate prediction and data-mining. The results showed that the random forests can achieve the best generalization results compared to the commonly used machine learning methods such as the artificial neural network, support vector regression, and logistic regression. In addition, the results also showed that regarding the effect to the corrosion rate, environmental factors contributed more than chemical compositions in the low alloy steels, but as exposure time increases, the effect of the environmental factors will gradually become less. Furthermore, we give the effect changes of six environmental factors (Cl− concentration, SO2 concentration, relative humidity, temperature, rainfall, and pH) on corrosion with exposure time increasing, and the results illustrated that pH had a significant contribution to the corrosion of the entire process. The paper also dealt with the problem of the corrosion rate forecast, especially for changing environmental factors situations, and obtained the qualitative and quantitative results of influences of each environmental factor on corrosion.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3