Classification of pitting corrosion damage in process facilities using supervised machine learning

Author:

Patel Parth1,Aryai Vahid12,Arzaghi Ehsan3,Kafian Hesam4,Abbassi Rouzbeh2,Garaniya Vikram1

Affiliation:

1. Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College (AMC) University of Tasmania Launceston Tasmania Australia

2. School of Engineering, Faculty of Science and Engineering Macquarie University Sydney New South Wales Australia

3. School of Mechanical, Medical and Process Engineering, Faculty of Engineering Queensland University of Technology Brisbane Queensland Australia

4. Department of Aerospace Engineering Sharif University of Technology Tehran Iran

Abstract

AbstractCorrosion is widely known to be a major cause of the failures in process facilities. Prediction of corrosion damage is therefore essential for industries to manage the availability of their assets. This research aims to investigate the application of supervised machine learning methods for the classification of pitting corrosion damage. Several machine learning classifiers, namely ensemble methods, support vector machine (SVM), K‐nearest neighbours, and the decision tree are used to classify the extent of pitting corrosion damage in corroded steel samples. To simulate the corrosion of the steel samples, a series of laboratory experiments were conducted. After processing the results using appropriate statistical methods, the corrosion data was used to train the machine learning models. The trained models can predict the class of corrosion damage with acceptable accuracy using the material and environmental specifications of the samples. Additionally, a discussion on the selection of machine learning techniques which classify corrosion damage using a risk‐based approach is provided. With their optimal accuracy and lower risk of misclassification, the SVM and AdaBoost models perform better than the other studied models.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3