A Novel V2V Cooperative Collision Warning System Using UWB/DR for Intelligent Vehicles

Author:

Wang Mingyang,Chen Xinbo,Jin Baobao,Lv Pengyuan,Wang WeiORCID,Shen Yong

Abstract

The collision warning system (CWS) plays an essential role in vehicle active safety. However, traditional distance-measuring solutions, e.g., millimeter-wave radars, ultrasonic radars, and lidars, fail to reflect vehicles’ relative attitude and motion trends. In this paper, we proposed a vehicle-to-vehicle (V2V) cooperative collision warning system (CCWS) consisting of an ultra-wideband (UWB) relative positioning/directing module and a dead reckoning (DR) module with wheel-speed sensors. Each vehicle has four UWB modules on the body corners and two wheel-speed sensors on the rear wheels in the presented configuration. An over-constrained localization method is proposed to calculate the relative position and orientation with the UWB data more accurately. Vehicle velocities and yaw rates are measured by wheel-speed sensors. An extended Kalman filter (EKF) is applied based on the relative kinematic model to combine the UWB and DR data. Finally, the time to collision (TTC) is estimated based on the predicted vehicle collision position. Furthermore, through UWB signals, vehicles can simultaneously communicate with each other and share information, e.g., velocity, yaw rate, which brings the potential for enhanced real-time performance. Simulation and experimental results show that the proposed method significantly improves the positioning, directing, and velocity estimating accuracy, and the proposed system can efficiently provide collision warning.

Funder

Ministry of Science and Technology of the People's Republic of China

Shanghai Automotive Industry Corp. Group

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Global Status Report on Road Safety 2018 https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/

2. Safety Benefits of Forward Collision Warning, Brake Assist, and Autonomous Braking Systems in Rear-End Collisions

3. Prevalence of Drowsy Driving Crashes: Estimates from a Large-Scale Naturalistic Driving Study;Owens,2018

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3