Numerical Analysis of an Autonomous Emergency Braking System for Rear-End Collisions of Electric Bicycles

Author:

Zhao Ying12,Li Haijun12,Huang Yan12,Hang Junyu3

Affiliation:

1. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of Railway Industry on Plateau Railway Transportation Intelligent Management and Control, Lanzhou 730070, China

3. MOT Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

Abstract

The rapid growth in the number of electric bicycles (e-bicycles) has greatly improved daily commuting for residents, but it has also increased traffic collisions involving e-bicycles. This study aims to develop an autonomous emergency braking (AEB) system for e-bicycles to reduce rear-end collisions. A framework for the AEB system composed of the risk recognition function and collision avoidance function was designed, and an e-bicycle following model was established. Then, numerical simulations were conducted in multiple scenarios to evaluate the effectiveness of the AEB system under different riding conditions. The results showed that the probability and severity of rear-end collisions involving e-bicycles significantly decreased with the application of the AEB system, and the number of rear-end collisions resulted in a 68.0% reduction. To more effectively prevent rear-end collisions, a low control delay (delay time) and suitable risk judgment criteria (TTC threshold) for the AEB system were required. The study findings suggested that when a delay time was less than or equal to 0.1 s and the TTC threshold was set at 2 s, rear-end collisions could be more effectively prevented while minimizing false alarms in the AEB system. Additionally, as the deceleration rate increased from 1.5 m/s2 to 4.5 m/s2, the probability and average severity of rear-end collisions also increased by 196.5% and 42.9%, respectively. This study can provide theoretical implications for the design of the AEB system for e-bicycles. The established e-bicycle following model serves as a reference for the microscopic simulation of e-bicycles.

Funder

Key Research and Development Project of Gansu Provincial Science and Technology Department

Systematic Major Project of China National Railway Group

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3