Adsorption of CO2, CO, H2, and N2 on Zeolites, Activated Carbons, and Metal-Organic Frameworks with Different Surface Nonuniformities

Author:

Kim Kang Hun1,Kim Moon Hyeon1

Affiliation:

1. Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Republic of Korea

Abstract

The single-component adsorption of CO2, CO, N2, and H2 at 25 and 35 °C was studied using microporous faujasite-framework zeolites (NaY and NaX), activated carbons (GCN and MSP), and metal–organic frameworks (A100 and Z1200) as starting points for the separation of CO2 from syngases produced by gasifying biomass-based solid wastes. The indicated adsorption isotherms and uptake of the adsorbates strongly depended on the adsorbates themselves as well as on the adsorbents because of significant differences in the surface features, such as surface nonuniformity, and in the molecular properties. The selectivity of CO2 to the other gases also varied with the adsorbents due to the distinctive energetic characteristics. The surfaces of the zeolites were the most energetically heterogeneous ones, yielding higher CO2 uptake at low pressures, while the two activated carbons and A100 had moderate surface heterogeneities, and MSP showed the highest CO2 uptake at high pressures, such as 6 bar, at which the micropore volume and surface area are important. Z1200, which has highly homogeneous surfaces and no high-affinity-binding sites, exhibited the lowest CO2 adsorption capacity regardless of equilibrated pressure. The surface nonuniformities of the six sorbents were consistent with the calculated isosteric heats of CO2 adsorption. CO2 could be reversibly adsorbed on NaY and MSP but not on GCN, with some metal impurities, although all these adsorbents showed a fully reversible process for CO adsorption. The estimated working capacity for CO2 adsorption at 25 °C was 0.78–6.50 mmol/g, depending on the sorbents used. The highest value was disclosed for MSP, the surface energetic heterogeneity of which was between that of zeolites and Z1200. Such a high working capacity bodes well for use in our later applications.

Funder

Daegu University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3