Research on Learning Concentration Recognition with Multi-Modal Features in Virtual Reality Environments

Author:

Hu Renhe1,Hui Zihan1,Li Yifan1ORCID,Guan Jueqi1ORCID

Affiliation:

1. Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China

Abstract

Learning concentration, as a crucial factor influencing learning outcomes, provides the basis for learners’ self-regulation and teachers’ instructional adjustments and intervention decisions. However, the current research on learning concentration recognition lacks the integration of cognitive, emotional, and behavioral features, and the integration of interaction and vision data for recognition requires further exploration. The way data are collected in a head-mounted display differs from that in a traditional classroom or online learning. Therefore, it is vital to explore a recognition method for learning concentration based on multi-modal features in VR environments. This study proposes a multi-modal feature integration-based learning concentration recognition method in VR environments. It combines interaction and vision data, including measurements of interactive tests, text, clickstream, pupil facial expressions, and eye gaze data, to measure learners’ concentration in VR environments in terms of cognitive, emotional, and behavioral representation. The experimental results demonstrate that the proposed method, which integrates interaction and vision data to comprehensively represent the cognitive, emotional, and behavioral dimensions of learning concentration, outperforms single-dimensional and single-type recognition results in terms of accuracy. Additionally, it was found that learners with higher concentration levels achieve better learning outcomes, and learners’ perceived sense of immersion is an important factor influencing their concentration.

Funder

Zhejiang Office of Education Sciences Planning

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3