CFD Simulation Based Ventilation and Dust Reduction Strategy for Large Scale Enclosed Spaces in Open Pit Coal Mines—A Case of Coal Shed

Author:

Ao Zhongchen123ORCID,Wang Zhiming123,Zhou Wei123ORCID,Qiao Yanzhen4,Wahab Abdoul2,Yang Zexuan2,Nie Shouhu2,Liu Zhichao25,Zhu Lixia6

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China

3. High Tech Research Center for Open-Pit Mines, China University of Mining and Technology, Xuzhou 221116, China

4. School of Engineering and Technology, Hulunbuir University, Hulunbuir 021008, China

5. Heidaigou Open-Pit Coal Mine of CHNENERGY Investment Group Co., Ltd., Zhunneng Group Co., Ordos 010300, China

6. Xinjiang Institute of Engineering, Support Xinjiang University Western Energy Development Institute, Urumqi 830023, China

Abstract

The coal shed is an enclosed space where raw coal is stored and handled. The intensive operation of the machinery inside the coal shed generates a large amount of dust, and the wind speed inside the enclosed space easily leads to a high concentration of dust, which endangers the physical and mental health of the workers. In this paper, we first studied the particle size distribution of dust samples in the coal shed and found that 12.2% of the dust in the air of the coal shed was 10–100 μm, 87.8% was less than 10 μm, and 72.9% was less than 2.5 μm. Fluent was used to simulate the law of dust dispersion in the coal shed under different working conditions, and finally, the simulation results were used to guide the design of the ventilation site and dust-reduction scenario. The experimental and simulation results show that under the same working conditions, the average dust reduction efficiency of the ventilation method in which the north side and south side pump air outside was 9.9%. The ventilation method in which the north side blows inside and the south side pumps outside was 23.7%. The average dust reduction efficiency of the ventilation method in which the north side blows inside and the south side pumps outside + placing the fan in the middle was 59.9%. The research results can provide some reference value for indoor air quality improvement.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Graduate Innovation Program of China University of Mining and Technology

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3