An Improved Machine Learning Approach for Optimizing Dust Concentration Estimation in Open-Pit Mines

Author:

Luan BoyuORCID,Zhou Wei,Jiskani Izhar MithalORCID,Wang Zhiming

Abstract

Dust is a severe environmental issue in open-pit mines, and accurate estimation of its concentration allows for viable solutions for its control and management. This research proposes a machine learning-based solution for accurately estimating dust concentrations. The proposed approach, tested using real data from the Haerwusu open-pit coal mine in China, is based upon the integrated random forest-Markov chain (RF-MC) model. The random forest method is used for estimation, while the Markov chain is used for estimation correction. The wind speed, temperature, humidity, and atmospheric pressure are used as inputs, while PM2.5, PM10, and TSP are taken as estimated outputs. A detailed procedure for implementing the RF-MC is presented, and the estimated performance is analyzed. The results show that after correction, the root mean squared error significantly decreased from 7.40 to 2.56 μg/m3 for PM2.5, from 15.73 to 5.28 μg/m3 for PM10, and from 18.99 to 6.27 μg/m3 for TSP, and the Pearson correlation coefficient and the mean absolute error also improved considerably. This work provides an improved machine learning approach for dust concentration estimation in open-pit coal mines, with a greater emphasis on simplicity and rapid model updates, which is more applicable to ensure the prudent use of water resources and overall environmental conservation, both of which are advantageous to green mining.

Funder

Supported by the Independent research project of State Key Laboratory of Coal Resources and Safe Mining, CUMT

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3