Optimization of Airflow Field for Pneumatic Drum Magnetic Separator to Improve the Separation Efficiency

Author:

Li XudongORCID,Wang Yuhua,Lu Dongfang,Zheng Xiayu,Gao Xuesong

Abstract

Traditional dry magnetic separation has poor separation efficiency for fine-grained materials, and combining airflow and a magnetic field may be one of the most effective means to improve it. Based on the pneumatic drum magnetic separator developed by our team, an improved pneumatic magnetic separator with a segmented flow field is proposed, which pushes materials to move along the separation surface. Analysis of flow field in the separation zone and the forces on particles show that the improved pneumatic magnetic separator makes it easier to collect fine magnetic particles, while nonmagnetic particles are more easily removed by airflow. Separation test results also show that the iron grade and the recovery of concentrate improved from 37.89% and 74.75% to 51.76% and 91.79%, respectively. The separation efficiency of the pneumatic drum magnetic separator has been remarkably improved by optimizing airflow field in the separation zone.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3