Abstract
To enhance dry magnetic separation of fine-grained materials, our research team developed the pneumatic drum magnetic separator (PDMS), an airflow-aided magnetic separator. Different positions at the separation surface of PDMS have varied separation angles, so particles at different positions may be subjected to varying composite forces, resulting in a mismatch between airflow velocity and magnetic field intensity. However, because the separation process of PDMS is continuous and the separation of particles at a certain position is instantaneous, the separation performance of PDMS at a specific separation angle cannot be investigated. To evaluate optimal operating features at different separation angles, a laboratory dry pneumatic flat magnetic separator (DPFMS) was manufactured, which also makes the airflow pass through the separation plane in the opposite direction to the magnetic force. The separation performance of PDMS was revealed by separation tests for −0.15 + 0.074 mm artificial mixed ore with 0–0.6 m/s airflow on DPFMS at various separation angles. At separation angles of 70° and 90°, the separation efficiency increases with an increase in airflow velocity from 16.68% and 33.09% to 77.72% and 76.54%, respectively; at separation angles of 110°, the separation efficiency increases initially from 89.53% to 90.69%, then decreases to 88.22% and keeps decreasing. The synergistic relationship between airflow drag, magnetic force and gravity were investigated by analyzing the composite force and the motion trajectory of a single particle. The results show that the proper airflow velocity aids in enhancing the distinctions between magnetite and quartz particles in resultant force and movement. However, throughout a wide range of air velocity, while the airflow can improve magnetite and quartz separation efficiency of at small separation angles, it may diminish the separation efficiency at large separation angles.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献