Multiparametric Profiling of Neutrophil Function via a High-Throughput Flow Cytometry-Based Assay

Author:

Timmer Kyle D.1ORCID,Floyd Daniel J.1ORCID,Scherer Allison K.12ORCID,Crossen Arianne J.1ORCID,Atallah Johnny12ORCID,Viens Adam L.1ORCID,Sykes David B.2345,Mansour Michael K.123

Affiliation:

1. Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA

2. Harvard Medical School, Boston, MA 20114, USA

3. Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA

4. Harvard Stem Cell Institute, Cambridge, MA 02114, USA

5. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02114, USA

Abstract

Neutrophils are a vital component of the innate immune system and play an essential function in the recognition and clearance of bacterial and fungal pathogens. There is great interest in understanding mechanisms of neutrophil dysfunction in the setting of disease and deciphering potential side effects of immunomodulatory drugs on neutrophil function. We developed a high throughput flow cytometry-based assay for detecting changes to four canonical neutrophil functions following biological or chemical triggers. Our assay detects neutrophil phagocytosis, reactive oxygen species (ROS) generation, ectodomain shedding, and secondary granule release in a single reaction mixture. By selecting fluorescent markers with minimal spectral overlap, we merge four detection assays into one microtiter plate-based assay. We demonstrate the response to the fungal pathogen, Candida albicans and validate the assay’s dynamic range using the inflammatory cytokines G-CSF, GM-CSF, TNFα, and IFNγ. All four cytokines increased ectodomain shedding and phagocytosis to a similar degree while GM-CSF and TNFα were more active in degranulation when compared to IFNγ and G-CSF. We further demonstrated the impact of small molecule inhibitors such as kinase inhibition downstream of Dectin-1, a critical lectin receptor responsible for fungal cell wall recognition. Bruton’s tyrosine kinase (Btk), Spleen tyrosine kinase (Syk), and Src kinase inhibition suppressed all four measured neutrophil functions but all functions were restored with lipopolysaccharide co-stimulation. This new assay allows for multiple comparisons of effector functions and permits identification of distinct subpopulations of neutrophils with a spectrum of activity. Our assay also offers the potential for studying the intended and off-target effects of immunomodulatory drugs on neutrophil responses.

Funder

National Institutes of Health/National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3