Efficient Underground Tunnel Place Recognition Algorithm Based on Farthest Point Subsampling and Dual-Attention Transformer

Author:

Chai Xinghua1ORCID,Yang Jianyong1,Yan Xiangming2ORCID,Di Chengliang1,Ye Tao2ORCID

Affiliation:

1. 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China

2. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

An autonomous place recognition system is essential for scenarios where GPS is useless, such as underground tunnels. However, it is difficult to use existing algorithms to fully utilize the small number of effective features in underground tunnel data, and recognition accuracy is difficult to guarantee. In order to solve this challenge, an efficient point cloud position recognition algorithm, named Dual-Attention Transformer Network (DAT-Net), is proposed in this paper. The algorithm firstly adopts the farthest point downsampling module to eliminate the invalid redundant points in the point cloud data and retain the basic shape of the point cloud, which reduces the size of the point cloud and, at the same time, reduces the influence of the invalid point cloud on the data analysis. After that, this paper proposes the dual-attention Transformer module to facilitate local information exchange by utilizing the multi-head self-attention mechanism. It extracts local descriptors and integrates highly discriminative global descriptors based on global context with the help of a feature fusion layer to obtain a more accurate and robust global feature representation. Experimental results show that the method proposed in this paper achieves an average F1 score of 0.841 on the SubT-Tunnel dataset and outperforms many existing state-of-the-art algorithms in recognition accuracy and robustness tests.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3