Simulation of Mechanical Response in Machining of Ti-6Al-4V Based on Finite Element Model and Visco-Plastic Self-Consistent Model

Author:

Wang Qingqing1,Yang Chengli1,Yang Haifeng1,He Yibo2

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The predictions of mechanical responses (stress–strain variations) in the machining of Ti-6Al-4V alloy are important to analyze the deformation conditions of machining to optimize the machining parameters and investigate the generation of a machined surface. The selection of a constitutive model is an essential factor that determines the deformation behavior in the machining simulation model. In this paper, two constitutive models of a modified Johnson–Cook (JC) equation and visco-plastic self-consistent (VPSC) model were used to investigate the stress–strain evolutions in the machining process of Ti-6Al-4V. A finite element (FE) machining model was established, considering the influences of grain refinement and deformation twins, based on a modified JC equation. The VPSC model was fitted based on the macro-strain rate sensitivity of the JC equation. The prediction results of the stress–strain curves of two models were compared, and their validities were further proved. The results show that flow stress hardening and inhomogeneities are caused by multi-scale grain refinement during the machining process of Ti-6Al-4V. Five slip deformation modes and one compressive twinning mode were activated in the VPSC model to be consistent with the macro-deformation behavior predicted with the FE model. The validations show the effectiveness of the modified JC equation, considering microstructural changes and the fitted VPSC model, in predicting dynamic behavior in the machining process of Ti-6Al-4V. The results provide two aspects of macro-deformation and polycrystal plasticity to elucidate the stress variations that occur during the machining of Ti-6Al-4V.

Funder

Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province for Youths

the State Key Laboratory of Solidification Processing in NWPU

Chinese Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3