Improved YOLOv5 Network for Steel Surface Defect Detection

Author:

Huang Bo1,Liu Jianhong1,Liu Xiang1,Liu Kang1,Liao Xinyu1,Li Kun1,Wang Jian1

Affiliation:

1. College of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin 644000, China

Abstract

Steel surface defect detection is crucial for ensuring steel quality. The traditional detection algorithm has low detection probability. This paper proposes an improved algorithm based on the YOLOv5 model to enhance detection probability. Firstly, deformable convolution is introduced in the backbone network, and a traditional convolution module is replaced by deformable convolution; secondly, the CBAM attention mechanism is added to the backbone network; then, Focal EIOU is used instead of the CIOU loss function in YOLOv5; lastly, the K-means algorithm is used to cluster the Anchor box, and the Anchor box parameters that are more suitable for this paper are obtained. The experimental results show that using deformable convolution instead of traditional convolution can get more feature information, which is more conducive to the learning of the network. This paper uses the CBAM attention mechanism, and the heat map of the attention mechanism shows that the CBAM attention mechanism is beneficial for feature extraction. Focal EIOU is optimized in high and wide loss compared with the CIOU loss function, which accelerates the convergence of the model. The Anchor box is more favorable for feature extraction. The improved algorithm achieved a detection probability of 78.8% in the NEU-DET dataset, which is 4.3% better than the original YOLOv5 network, and the inference time of each image is only increased by 1 ms; therefore, the optimized algorithm proposed in this paper is effective.

Funder

Sichuan University, Zigong City, special funds for school-local science and technology cooperation

Science and Technology Department of Sichuan Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3