Enhancing the Tribological Performance of Tool Steels for Wood-Processing Applications: A Comprehensive Review

Author:

Muhammed Musa1ORCID,Javidani Mousa1,Heidari Majid2,Jahazi Mohammad3ORCID

Affiliation:

1. Department of Applied Science, University of Quebec at Chicoutimi, Saguenay, QC G7H 2B1, Canada

2. DK SPEC Company, 1060, Chemin Olivier, St-Nicolas, Lévis, QC G7A 2M8, Canada

3. Department of Mechanical Engineering, École de Technologie Superieure (ETS), Montreal, QC H3C 1K3, Canada

Abstract

The stochastic nature of tool wear during wood machining, owing to the dynamic properties of the biological material and its dependence on various factors, has raised significant industrial and research concerns in recent years. Explicitly, the tool wear is a product of the interaction between wood properties (such as hardness, density, and contamination level) and machining parameters (such as cutting speed, feed rate, and rake angle) alongside ambient conditions (such as temperature and humidity). The objective of this review paper is to provide an overview of recent advancements in the field of wood machining. To begin with, it highlights the important role of wood properties and ambient conditions influencing tool wear. Furthermore, the paper examines the various mechanisms involved in the wood-machining process and discusses their cost implications from an industrial perspective. It also covers technological advancements in the characterization of tool wear and explores the relationship between this parameter and other machining variables. It provides critical and analytical discussions on various methods for enhancing tool wear, including heat treatment, cryogenic treatment, thermochemical treatment, coating deposition, and hybrid treatments. Additionally, the paper incorporates statistical analysis to achieve two objectives. Firstly, it aims to identify the most significant wood property that affects tool wear and establish the correlation between this parameter and wood properties. Secondly, it investigates the effect of heat treatment parameters and carbide characteristics on tool wear as well as their correlation. Lastly, the review provides recommendations based on relevant literature for prospective researchers and industrial counterparts in the field. These recommendations aim to guide further exploration and practical applications in the subject matter.

Funder

Natural Sciences and Engineering Research Council of Canada

Consortium de Recherche et Innovation en Transformation Métallique

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3