Abstract
Updating road networks using remote sensing imagery is among the most important topics in city planning, traffic management and disaster management. As a good alternative to manual methods, which are considered to be expensive and time consuming, deep learning techniques provide great improvements in these regards. One of these techniques is the use of deep convolution neural networks (DCNNs). This study presents a road segmentation model consisting of a skip connection of U-net and residual blocks (ResBlocks) in the encoding part and convolution layers (Conv. layer) in the decoding part. Although the model uses fewer residual blocks in the encoding part and fewer convolution layers in the decoding part, it produces better image predictions in comparison with other state-of-the-art models. This model automatically and efficiently extracts road networks from high-resolution aerial imagery in an unexpansive manner using a small training dataset.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献