System Reliability Evaluation of Prefabricated RC Hollow Slab Bridges Considering Hinge Joint Damage Based on Modified AHP

Author:

Liu Hanbing,Wang Xirui,Tan GuojinORCID,He XinORCID,Luo GuobaoORCID

Abstract

The prefabricated reinforced concrete (RC) hollow slab bridges, with the advantages of high quality, lower cost and shorter construction period, have been widely used for small-to-medium-span highway bridges in China. Because of environmental deterioration and traffic volume increases, the performance of the bridge system deteriorates gradually. Accurate bridge system evaluation can provide a reliable basis for maintenance and management. A bridge system is composed of multiple interrelated components, which makes the system reliability evaluation become a computationally intractable work. In this paper, an effective method was proposed to evaluate the system reliability of the prefabricated RC hollow slab bridge considering hinge joint damage based on the modified analytic hierarchy process (AHP). Considering the subjectivity of the traditional AHP method in constructing the judgment matrix, this paper proposed an objective construction method of the judgment matrix to modify the traditional AHP. The modified hinge plate method (MHPM) proposed by the previous research was utilized to analyze the effect of hinge joint damage on system reliability. In order to verify the applicability of the proposed system reliability evaluation method, a simply supported RC hollow slab bridge was selected as the case study and the system reliability indexes were compared with the traditional series and parallel methods. The results indicated that the traditional methods were either too conservative or too radical to objectively evaluate the actual system reliability level of the structure. In contrast, the proposed method in this paper was more suitable for evaluating the system reliability of such bridges, and more accurate in providing maintenance decision makers with a relatively reasonable bridge condition information.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3