Author:
Liu Hanbing,He Xin,Jiao Yubo
Abstract
Hinge joint damage is a typical form of damage occurring in simply supported slab bridges, which can present adverse effects on the overall force distribution of the structure. However, damage identification methods of hinge joint damage are still limited. In this study, a damage identification algorithm for simply supported hinged-slab bridges based on the modified hinge plate method (MHPM) and artificial bee colony (ABC) algorithms was proposed by considering the effect of hinge damage conditions on the lateral load distribution (LLD) of structures. Firstly, MHPM was proposed and demonstrated, which is based on a traditional hinge plate method by introducing relative displacement as a damage factor to simulate hinge joint damage. The effectiveness of MHPM was verified through comparison with the finite element method (FEM). Secondly, damage identification was treated as the inverse problem of calculating the LLD in damage conditions of simply supported slab bridges. Four ABC algorithms were chosen to solve the problem due to its simple structure, ease of implementation, and robustness. Comparisons of convergence speed and identification accuracy with genetic algorithm and particle swarm optimization were also conducted. Finally, hinged bridges composed of four and seven slabs were studied as numerical examples to account for the feasibility and correctness of the proposed method. The simulation results revealed that the proposed algorithm could identify the location and degree of damaged joints efficiently and precisely.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献