Full-Space Wavefront Shaping of Broadband Vortex Beam with Switchable Terahertz Metasurface Based on Vanadium Dioxide

Author:

Li Xueying1,Zhang Ying1ORCID,Jiang Jiuxing1,Yao Yongtao2,He Xunjun3ORCID

Affiliation:

1. College of Science, Harbin University of Science and Technology, Harbin 150080, China

2. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China

3. Key Laboratory of Engineering Dielectric and Applications, Ministry of Education, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Currently, vortex beams are extensively utilized in the information transmission and storage of communication systems due to their additional degree of freedom. However, traditional terahertz metasurfaces only focus on the generation of narrowband vortex beams in reflection or transmission mode, which is unbeneficial for practical applications. Here, we propose and design terahertz metasurface unit cells composed of anisotropic Z-shaped metal structures, two dielectric layers, and a VO2 film layer. By utilizing the Pancharatnam–Berry phase theory, independent control of a full 2π phase over a wide frequency range can be achieved by rotating the unit cell. Moreover, the full-space mode (transmission and reflection) can also be implemented by utilizing the phase transition of VO2 film. Based on the convolution operation, three different terahertz metasurfaces are created to generate vortex beams with different wavefronts in full-space, such as deflected vortex beams, focused vortex beams, and non-diffraction vortex beams. Additionally, the divergences of these vortex beams are also analyzed. Therefore, our designed metasurfaces are capable of efficiently shaping the wavefronts of broadband vortex beams in full-space, making them promising applications for long-distance transmission, high integration, and large capacity in 6G terahertz communications.

Funder

the National Natural Science Foundation of China

the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments

the Natural Science Foundation of Heilongjiang Province

the Special Projects in Key Fields of Ordinary Universities in Guangdong Province, China

the Project of Innovative and Entrepreneurship Training Program for College Students in Heilongjiang Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3