Artificial Synapses Based on an Optical/Electrical Biomemristor

Author:

Wang Lu1,Wei Shutao1,Xie Jiachu1,Ju Yuehang1,Yang Tianyu1,Wen Dianzhong1

Affiliation:

1. Heilongjiang Provincial Key Laboratory of Micronano Sensitive Devices and Systems, School of Electronic Engineering, Heilongjiang University, Harbin 150080, China

Abstract

As artificial synapse devices, memristors have attracted widespread attention in the field of neuromorphic computing. In this paper, Al/polymethyl methacrylate (PMMA)/egg albumen (EA)–graphene quantum dots (GQDs)/PMMA/indium tin oxide (ITO) electrically/optically tunable biomemristors were fabricated using the egg protein as a dielectric layer. The electrons in the GQDs were injected from the quantum dots into the dielectric layer or into the adjacent quantum dots under the excitation of light, and the EA–GQDs dielectric layer formed a pathway composed of GQDs for electronic transmission. The device successfully performed nine brain synaptic functions: excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), short-term potentiation (STP), short-term depression (STD), the transition from short-term plasticity to long-term plasticity, spike-timing-dependent plasticity (STDP), spike-rate-dependent plasticity (SRDP), the process of learning, forgetting, and relearning, and Pavlov associative memory under UV light stimulation. The successful simulation of the synaptic behavior of this device provides the possibility for biomaterials to realize neuromorphic computing.

Funder

National Natural Science Foundation of China

Heilongjiang Provincial Natural Science Foundation of China

Basic Research Business Funding for Provincial Universities in the Heilongjiang Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3