Quantum Diffie–Hellman Extended to Dynamic Quantum Group Key Agreement for e-Healthcare Multi-Agent Systems in Smart Cities

Author:

Naresh Vankamamidi S.,Nasralla Moustafa M.ORCID,Reddi Sivaranjani,García-Magariño IvánORCID

Abstract

Multi-Agent Systems can support e-Healthcare applications for improving quality of life of citizens. In this direction, we propose a healthcare system architecture named smart healthcare city. First, we divide a given city into various zones and then we propose a zonal level three-layered system architecture. Further, for effectiveness we introduce a Multi-Agent System (MAS) in this three-layered architecture. Protecting sensitive health information of citizens is a major security concern. Group key agreement (GKA) is the corner stone for securely sharing the healthcare data among the healthcare stakeholders of the city. For establishing GKA, many efficient cryptosystems are available in the classical field. However, they are yet dependent on the supposition that some computational problems are infeasible. In light of quantum mechanics, a new field emerges to share a secret key among two or more members. The unbreakable and highly secure features of key agreement based on fundamental laws of physics allow us to propose a Quantum GKA (QGKA) technique based on renowned Quantum Diffie–Hellman (QDH). In this, a node acts as a Group Controller (GC) and forms 2-party groups with remaining nodes, establishing a QDH-style shared key per each two-party. It then joins these keys into a single group key by means of a XOR-operation, acting as a usual group node. Furthermore, we extend the QGKA to Dynamic QGKA (DQGKA) by adding join and leave protocol. Our protocol performance was compared with existing QGKA protocols in terms of Qubit efficiency (QE), unitary operation (UO), unitary operation efficiency (UOE), key consistency check (KCC), security against participants attack (SAP) and satisfactory results were obtained. The security analysis of the proposed technique is based on unconditional security of QDH. Moreover, it is secured against internal and external attack. In this way, e-healthcare Multi-Agent System can be robust against future quantum-based attacks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Computing in Healthcare;Applications and Principles of Quantum Computing;2024-01-31

2. Measurement-device-independent quantum key agreement based on entanglement swapping;Quantum Information Processing;2023-12-12

3. Secure Key Exchange for Protecting Health Data Diffie-Hellman Based Approach;2023 IEEE 9th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA);2023-10-17

4. DP2AS—Definitive Privacy-Preserving Analytical Scheme for Healthcare Data Processing;2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM);2023-06

5. Measurement-device-independent multi-party quantum key agreement;Frontiers in Quantum Science and Technology;2023-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3