Abstract
Sensor systems for the Internet of Things (IoT) make it possible to continuously monitor people, gathering information without any extra effort from them. Thus, the IoT can be very helpful in the context of early disease detection, which can improve peoples’ quality of life by applying the right treatment and measures at an early stage. This paper presents a new use of IoT sensor systems—we present a novel three-door smart cupboard that can measure the memory of a user, aiming at detecting potential memory losses. The smart cupboard has three sensors connected to a Raspberry Pi, whose aim is to detect which doors are opened. Inside of the Raspberry Pi, a Python script detects the openings of the doors, and classifies the events between attempts of finding something without success and the events of actually finding it, in order to measure the user’s memory concerning the objects’ locations (among the three compartments of the smart cupboard). The smart cupboard was assessed with 23 different users in a controlled environment. This smart cupboard was powered by an external battery. The memory assessments of the smart cupboard were compared with a validated test of memory assessment about face–name associations and a self-reported test about self-perceived memory. We found a significant correlation between the smart cupboard results and both memory measurement methods. Thus, we conclude that the proposed novel smart cupboard successfully measured memory.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献