A Novel Photovoltaic Module Quick Regulate MPPT Algorithm for Uniform Irradiation and Partial Shading Conditions

Author:

Liu Hwa-Dong,Lu Shiue-DerORCID,Lee Yu-LinORCID,Lin Chang-HuaORCID

Abstract

This study proposed a new photovoltaic module quick regulate (PVM-QR) maximum power point tracking (MPPT) algorithm, which can eliminate the disturbance problem of the hill-climbing (HC) algorithm, especially under low irradiance level and partial shading conditions (PSC). This proposed algorithm has the advantage that it only uses the detection photovoltaic module (PVM) impedance and the open-circuit voltage to simply and quickly calculate the PVM temperature, the irradiance level, and then the key factor parameter u. To achieve the MPPT quickly and accurately, this proposed algorithm is developed for the prediction of the best MPPT duty cycle based on the irradiance level, parameter u, and load. This study verified the proposed MPPT by the measurement results, where the HC algorithm MPPT has 95% efficiency at 0.55 kW/m2 but diverges at 0.2 kW/m2 under uniform irradiation conditions (UIC), and the proposed MPPT algorithm has an improved efficiency (99%) under the same conditions. Moreover, the proposed MPPT algorithm has 99% efficiency under PSC, while the HC algorithm MPPT’s efficiency is 66%. This study implemented a simple-design circuit with the proposed MPPT algorithm for UIC and PSC, where the actual experiment results can also verify that the proposed algorithm performs better than the HC algorithm.

Funder

Ministry of Science and Technology, Taiwan, R.O.C.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3