Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean

Author:

Yang Lihui123,Liu Cong4,Wang Ying1,Wang Xiutong1ORCID,Gao Haiping2

Affiliation:

1. Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China

3. Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China

4. Southwest Technology and Engineering Research Institute, Chongqing 400039, China

Abstract

In this work, the dynamic marine atmospheric corrosion behavior of AZ91 Mg alloy sailing from Yellow Sea to Western Pacific Ocean was studied. The corrosion rates were measured using the weight loss method. The microstructure, phase, and chemical composition of corroded samples were investigated by SEM, EDS, XRD, and XPS. The results show that the evolution of corrosion rates of AZ91 Mg alloy was divided into three stages: rapidly increasing during the first 3 months, then remaining stable for the next three months, and finally decreasing after 6 months. The annual corrosion rate of Mg alloy reached 32.50 μm/y after exposure for 12 months in a dynamic marine atmospheric environment, which was several times higher than that of the static field exposure tests. AZ91 magnesium alloy was mainly subjected to localized corrosion with more destructiveness to Mg parts, which is mainly due to the synergistic effect of high relative humidity, the high deposition rate of chloride ion, sulfur dioxide acidic gas produced by fuel combustion, and rapid temperature changes caused by the alternating changes in longitude and latitude during navigation. As the exposure time increased, the corrosion pits gradually increased and deepened. The maximum depth of the corrosion pit was 197 μm after 12 months of exposure, which is almost 6 times the average corrosion depth. This study provides scientific data support for the application of magnesium alloys in shipborne aircraft and electronic equipment. The results could provide guidance for the design of new magnesium alloys and development of anti-corrosion technologies.

Funder

Program

Overseas Science and education cooperation center deployment project

National Science and Technology Resources Investigation Program of China

Wenhai Program of the S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3