PSO-BP-Based Morphology Prediction Method for DED Remanufactured Deposited Layers

Author:

Wang Zisheng1,Jiang Xingyu1,Song Boxue1,Yang Guozhe1,Liu Weijun1,Liu Tongming1,Ni Zhijia1,Zhang Ren1

Affiliation:

1. School of Mechanical Engineering, Shenyang University of Technology, No. 111, Shenliao West Road, Tiexi District, Shenyang 110870, China

Abstract

Directed energy deposition is a typical laser remanufacturing technology, which can effectively repair failed parts and extend their service life, and has been widely used in aerospace, metallurgy, energy and other high-end equipment key parts remanufacturing. However, the repair quality and performance of the repaired parts have been limited by the morphological and quality control problems of the process because of the formation mechanism and process of the deposition. The main reason is that the coupling of multiple process parameters makes the deposited layer morphology and surface properties difficult to be accurately predicted, which makes it difficult to regulate the process. Thus, the deposited layer forming mechanism and morphological properties of directed energy deposition were systematically analyzed, the height and width of multilayer deposition layers were taken as prediction targets, and a PSO-BP-based model for predicting the morphology of directed energy deposited layers was settled. The weights and thresholds of Back Propagation (BP) neural networks were optimized using a Particle Swarm Optimization (PSO) algorithm, the predicted values of deposited layer morphology for different process parameters were obtained, and the problem of low accuracy of deposited layer morphology prediction due to slow convergence and poor uniformity of the solution set of traditional optimization models was addressed. Remanufacturing experiments were conducted, and the experimental results showed that the deposited layer morphology prediction model proposed in this paper has a high prediction accuracy, with an average prediction error of 1.329% for the layer height and 0.442% for the layer width. The research of the paper provided an effective way to control the morphology and properties of the directed energy deposition process. A valuable contribution is made to the field of laser remanufacturing technology, and significant implications are held for various industries such as aerospace, metallurgy, and energy.

Funder

2016 Green Manufacturing System Integration Project of Ministry of Industry and Information Technology of China

Research on the Theory and Method of Quality Intelligent Control in the Remanufacturing Process of Waste Mechanical and Electrical Products

Program for the Top Young Innovative Talents of Liaoning Revitalization Talent Program

Liaoning Provincial Department of Education Project

Program for the Top Young and Middle-aged Innovative Talents of Shenyang

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3