Sustainable Artificial Intelligence-Based Twitter Sentiment Analysis on COVID-19 Pandemic

Author:

Vaiyapuri Thavavel1ORCID,Jagannathan Sharath Kumar2ORCID,Ahmed Mohammed Altaf3ORCID,Ramya K. C.4,Joshi Gyanendra Prasad5ORCID,Lee Soojeong5,Lee Gangseong6ORCID

Affiliation:

1. College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Frank J. Guarini School of Business, Saint Peter’s University, 2641 John F. Kennedy Boulevard, Jersey City, NJ 07306, USA

3. Department of Computer Engineering, College of Computer Engineering & Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

4. Department of EEE, Sri Krishna College of Engineering and Technology, Coimbatore 641008, India

5. Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea

6. Ingenium College, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea

Abstract

The COVID-19 outbreak is a disastrous event that has elevated many psychological problems such as lack of employment and depression given abrupt social changes. Simultaneously, psychologists and social scientists have drawn considerable attention towards understanding how people express their sentiments and emotions during the pandemic. With the rise in COVID-19 cases with strict lockdowns, people expressed their opinions publicly on social networking platforms. This provides a deeper knowledge of human psychology at the time of disastrous events. By applying user-produced content on social networking platforms such as Twitter, the sentiments and views of people are analyzed to assist in introducing awareness campaigns and health intervention policies. The modern evolution of artificial intelligence (AI) and natural language processing (NLP) mechanisms has revealed remarkable performance in sentimental analysis (SA). This study develops a new Marine Predator Optimization with Natural Language Processing for Twitter Sentiment Analysis (MPONLP-TSA) for the COVID-19 Pandemic. The presented MPONLP-TSA model is focused on the recognition of sentiments that exist in the Twitter data during the COVID-19 pandemic. The presented MPONLP-TSA technique undergoes data preprocessing to convert the data into a useful format. Furthermore, the BERT model is used to derive word vectors. To detect and classify sentiments, a bidirectional recurrent neural network (BiRNN) model is utilized. Finally, the MPO algorithm is exploited for optimal hyperparameter tuning process, and it assists in enhancing the overall classification performance. The experimental validation of the MPONLP-TSA approach can be tested by utilizing the COVID-19 tweets dataset from the Kaggle repository. A wide comparable study reported a better outcome of the MPONLP-TSA method over current approaches.

Funder

Kwangwoon University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3