Color Texture Image Complexity—EEG-Sensed Human Brain Perception vs. Computed Measures

Author:

Nicolae Irina E.ORCID,Ivanovici MihaiORCID

Abstract

In practical applications, such as patient brain signals monitoring, a non-invasive recording system with fewer channels for an easy setup and a wireless connection for remotely monitor physiological signals will be beneficial. In this paper, we investigate the feasibility of using such a system in a visual perception scenario. We investigate the complexity perception of color natural and synthetic fractal texture images, by studying the correlations between four types of data: image complexity that is expressed by computed color entropy and color fractal dimension, human subjective evaluation by scoring, and the measured brain EEG responses via Event-Related Potentials. We report on the considerable correlation experimentally observed between the recorded EEG signals and image complexity while considering three complexity levels, as well on the use of an EEG wireless system with few channels for practical applications, with the corresponding electrodes placement in accordance with the type of neural activity recorded.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference89 articles.

1. The use of single-electrode wireless EEG in biobehavioral investigations;Poltavski,2015

2. Wearable EEG and beyond;Casson,2019

3. Recent and upcoming BCI progress: Overview, analysis, and recommendations;Allison,2012

4. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications

5. Comparison of Dry and Gel Based Electrodes for P300 Brain–Computer Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3