On the Quantification of Visual Texture Complexity

Author:

Mirjalili Fereshteh,Hardeberg Jon YngveORCID

Abstract

Complexity is one of the major attributes of the visual perception of texture. However, very little is known about how humans visually interpret texture complexity. A psychophysical experiment was conducted to visually quantify the seven texture attributes of a series of textile fabrics: complexity, color variation, randomness, strongness, regularity, repetitiveness, and homogeneity. It was found that the observers could discriminate between the textures with low and high complexity using some high-level visual cues such as randomness, color variation, strongness, etc. The results of principal component analysis (PCA) on the visual scores of the above attributes suggest that complexity and homogeneity could be essentially the underlying attributes of the same visual texture dimension, with complexity at the negative extreme and homogeneity at the positive extreme of this dimension. We chose to call this dimension visual texture complexity. Several texture measures including the first-order image statistics, co-occurrence matrix, local binary pattern, and Gabor features were computed for images of the textiles in sRGB, and four luminance-chrominance color spaces (i.e., HSV, YCbCr, Ohta’s I1I2I3, and CIELAB). The relationships between the visually quantified texture complexity of the textiles and the corresponding texture measures of the images were investigated. Analyzing the relationships showed that simple standard deviation of the image luminance channel had a strong correlation with the corresponding visual ratings of texture complexity in all five color spaces. Standard deviation of the energy of the image after convolving with an appropriate Gabor filter and entropy of the co-occurrence matrix, both computed for the image luminance channel, also showed high correlations with the visual data. In this comparison, sRGB, YCbCr, and HSV always outperformed the I1I2I3 and CIELAB color spaces. The highest correlations between the visual data and the corresponding image texture features in the luminance-chrominance color spaces were always obtained for the luminance channel of the images, and one of the two chrominance channels always performed better than the other. This result indicates that the arrangement of the image texture elements that impacts the observer’s perception of visual texture complexity cannot be represented properly by the chrominance channels. This must be carefully considered when choosing an image channel to quantify the visual texture complexity. Additionally, the good performance of the luminance channel in the five studied color spaces proves that variations in the luminance of the texture, or as one could call the luminance contrast, plays a crucial role in creating visual texture complexity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3