Toward Adaptability of E-Evaluation: Transformation from Tree-Based to Graph-Based Structure

Author:

Margienė Asta,Ramanauskaitė SimonaORCID

Abstract

The COVID-19 pandemic and quarantine have forced students to use distance learning. Modern information technologies have enabled global e-learning usage but also revealed a lack of personalization and adaptation in the learning process when compared to face-to-face learning. While adaptive e-learning methods exist, their practical application is slow because of the additional time and resources needed to prepare learning material and its logical adaptation. To increase e-learning materials’ usability and decrease the design complexity of automated adaptive students’ work evaluation, we propose several transformations from a competence tree-based structure to a graph-based automated e-evaluation structure. Related works were summarized to highlight existing e-evaluation structures and the need for new transformations. Competence tree-based e-evaluation structure improvements were presented to support the implementation of top-to-bottom and bottom-to-top transformations. Validation of the proposed transformation was executed by analyzing different use-cases and comparing them to the existing graph-to-tree transformation. Research results revealed that the competence tree-based learning material storage is more reusable than graph-based solutions. Competence tree-based learning material can be transformed for different purposes in graph-based e-evaluation solutions. Meanwhile, graph-based learning material transformation to tree-based structure implies material redundancy, and the competence of the tree structure cannot be restored.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Real-time personalization and recommendation in Adaptive Learning Management System

2. Personalized, Affect and Performance-driven Computer-based Learning

3. Adaptive learning path recommender approach using auxiliary learning objects

4. Flow: The Psychology of Optimal Experience;Csikszentmihalyi,2008

5. Finding Flow: The Psychology of Engagement with Everyday Life;Csikszentmihalyi,1998

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3